- (d) Determine whether a semi group with more than one idempotent elements can be a group.
- (e) Prove that the intersection of any two subgroups of a group G is again a subgroup of G.
- (f) Define a ring. Show that the system $[E, +, \times)$ of even integers is a ring under ordinary addition and multiplication.
- 5. Attempt any **TWO** parts of the following :— $(10 \times 2 = 20)$
 - (a) Show that a connected graph G is an Euler graph if and only if it can be decomposed into circuits.
 - (b) Write short notes on the following :---
 - (i) Planer graph
 - (ii) Euler graph
 - (iii) Graph Coloring
 - (c) (i) Given the in order and post order traversal of a tree T :
 - In order : BEHFACDGI
 - Post order : HFEABIGDC
 - Determine the tree T and its pre order.

4

(ii) Prove that a binary tree with n vertices has exactly (n+1) null branches.

Printed	Pages—4	EOE038			
(Followin	g Paper ID and Roll No. to b	e filled in your Answer Book			
PAPER	ID:0934 Roll No.				
B.Tech. (SEM. III) ODD SEMESTER THEORY EXAMINATION 2013-14 DISCRETE MATHEMATICS					
			Time : 3	Hours	Total Marks : 100
			Note :—	-(1) Attempt ALL questi	ons.
	(2) Each question carry	ies equal marks.			
1. Atte	mpt any FOUR parts of th	the following :— $(5 \times 4 = 20)$			
(a)	If A and B are two sets, prove that				
	$\mathbf{A} \cup \mathbf{B} = (\mathbf{A} - \mathbf{B}) \cup \mathbf{B}$				
(b)	(b) Prove that union of two countably infinite set is cou				
infinite.					
(c)	If R is an equivalence relation on a Set A, then show that R^{-1} is also an equivalence relation on A.				
(d)	Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y) : x > y\}.$				
	(i) Give the ordered pair	r of R.			
	(ii) Draw the graph of H	ર .			
	(iii) Give the relation mat	trix of R.			
(e)	Let $A = \{1, 2, 3, 4\}$. Give an example of R in A which is :				
	(i) neither symmetric no	or reflexive			
	(ii) symmetric, reflexive	but not transitive			
	(iii) transitive and reflexing	ve but not symmetric.			

10950

EOE038/DNG-52049

1

[Turn Over

(f) Let f, g, $h \in R$ be defined as

 $f(x) = x - 5, g(x) = x + 5, h(x) = 7x \forall x \in R.$ Find gof, h of, f oh og.

- 2. Attempt any TWO parts of the following :- (10×2=20)
 - (a) (i) Find whether the proposition $P \lor \sim (p \land q)$ is tautology or not.
 - (ii) Find whether the proposition (p ∧ q) ∧ ~ (p ∨ q) is a contradiction or not.
 - (b) (i) The contrapositive of a statement S is given as "If x < 2 then x + 4 < 6." Write the statement S and its converse.
 - (ii) Find a formula A that uses the variable p, q and r such that A is a contradiction.
 - (c) (i) Translate the following statements in quantified expressions of predicate logic :
 - (α) all students need financial aid.
 - (β) some students need financial aid.
 - (ii) Determine the validity of the following argument using truth table :
 - S_1 : If 7 is less than 4, then 7 is not a prime number.
 - S_2 : 7 is not less than 4.

_ _ _ _ _ _ _ _ _ _ _ _

2

S : 7 is a prime number.

EOE038/DNG-52049

- 3. Attempt any **TWO** parts of the following :— $(10 \times 2 = 20)$
 - (a) (i) Find the simple expression for the generating function of following discrete numeric function :

$$1, \frac{2}{3}, \frac{3}{9}, \frac{4}{27}, \dots, \frac{r+1}{3^r}, \dots$$

(ii) Solve the recurrence relation

 $a_r - 6a_{r-1} + 8a_{r-2} = r.4^r$, given $a_0 = 8$, $a_1 = 22$.

- (b) (i) A committee of 5 is to be formed out of 6 boys and 4 girls. In how many ways this can be done when at least 2 girls are included ?
 - (ii) How many selections any number at a time may be made from three white balls, four green balls, one red ball and one black ball if at least one must be chosen.
- (c) Using generating function, solve the following recurrence relation :

 $a_r - 9a_{r-1} + 26 a_{r-2} - 24 a_{r-3} = 0, n \ge 3$ with $a_0 = 0, a_1 = 1$ and $a_2 = 10$.

- 4. Attempt any FOUR parts of the following : $(5 \times 4 = 20)$
 - (a) Define a group. Verify whether the set of all integers Z forms a group with respect to difference.
 - (b) Define a cyclic group. Prove that cyclic group is abelian.
 - (c) Show that the set N of natural numbers is a semigroup under the operation $x * y = max (x \cdot y)$. Is it a monoid ?

3

EOE038/DNG-52049

[Turn Over