

GALGOTIAS COLLEGE OF ENGINEERING AND TECHNOLOGY

1, Knowledge Park-II, Greater Noida, U.P.

ASSINGNMENT-1 (matrices)

Prob1:- Find the inverse of the following matrices by using elementary transformation.

	0	1	2]	()	3	-3	4	<i></i>	[1	2	3]	<i>.</i>	1	2	5	
(i)	1	2	3 '	(11)	2	-3	4 1	(111)	2	4	5 '	(iv)	2	3	1	
	3	1	1		0	-1	1		3	5	6		1	1	1	

Prob2:- Find two non singular matrices p and Q from the following matrices .also find A^{-1} if possible.

	2	1	-3	-6	[3	3	-3	4		1	-3	1	2
(i) $_{A=}$	3	-3	1	2 '	(ii) $A = \begin{vmatrix} 2 \end{vmatrix}$	2	-3	4 '	$(iii)_{A=}$	0	1	2	3
	1	1	1	2)	-1	1		3	4	1	-2

Prob3:- Find the value of λ ,for which the equations.

- (i) $x + (\lambda + 4)y + (4\lambda + 2)z = 0$, $x + 2(\lambda + 1)y + (3\lambda + 4)z = 0$, $2x + 3\lambda y + (3\lambda + 4)z = 0$. have a non trivial solution .also find the solution in each case.
- Prob4:- . Examine the consistency of the following system of equations, if consistent solve them.
 - (i) 3x+3y+2z = 1, x+2y = 4, 10y+3z = -2, 2x-3y-z = 5.(ii) x+2y-z = 3, 3x-y+2z = 1, 2x-2y+3z = 2, x-y+z = -1.(iii) x+2y-z = 3, 3x-y+2z = 1, 2x-2y+3z = 2, x-y+z = -1.

Prob5:-. Determine the values of λ , μ , the following system of equations $3x-2y+z = \mu$, 5x-8y+9z = 3, $2x+y+\lambda z = -1$ has (i) Unique solution, (ii) no solution, (iii) Infinite many solutions.

Prob6:-. Show that the equations -2x + y + z = a, x - 2y + z = b, x + y - 2z = c have no solution unless a + b + c = 0, in which case they have infinitely many solutions. Find these solutions when a = 1, b = 1, c = 1.

- Prob7:- Examine for linear dependency of vectors (1, 2, 4), (2, -1, 3), (0, 1, 2), (-3, 7, 2) in R^3 . If they are linearly dependent, find the relation.
- Prob8:- Examine for linear dependency of vectors (1,1,0), (3,1,3), (5,3,3) in \mathbb{R}^3 . If they are linearly Dependent , find the relation.
- Prob9:- Find the Eigen values and corresponding eigenvectors of the following matrices:

	2	0	0		-2	1	0		-14	1	0		3	0	0]		1	-2	0]	
(i)	1	0	2	, (ii)	1	3	0	,(iii)	0	2	0	, (iv)	1	-2	-8	(v)	0	0	0	
	0	0	3_		0	0	-1_		1	0	2		0	-5	1		5	0	7	

Prob10:- . Verify Caley –Hamilton theorem for all the following matrices. And find A^{-1} .

	1	-2	0		3	0	0			4	6	6]	
(v)	0	0	0	(vi) 1	-2	-8	,	(vii)	1	3	2	•
	5	0	7		0	-5	1			-1	-4	-3	

Prob11:- Find the matrix A whose Eigen values are 1,1,3 and corresponding eigenvectors are

(1,0,-1)', (0,1,-1)', (1,1,0)' Respectively.

Prob12:- Find the matrix A whose Eigen values are 11,-1,2 and corresponding eigenvectors are

(1,1,0)',(1,0,1)',(3,1,1)' respectively.

Prob13:-Reduce the following matrices in to the diagonal matrix .if possible

	Γı	17		2	0	0		3	0	0
(i)		2	(ii)	1	0	2	(iii))	1	-2	-8
	L2	2		0	0	3		0	-5	1

Prob14:- Find the characteristic equation and characteristic roots of the matrix $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ and verify

cayley Hamilton theorem for this matrix. Find A^{-1} and also express $A^6 - 4A^5 + 8A^4 - 12A^3 + 14A^2$ as a linear polynomial in A.

Prob15:- Find the rank of the following matrices by Echelon form and normal form method.

	1	2	3		1	2	5	
(i)	2	4	5,	(ii)	2	3	1	•
	3	5	6		1	1	1	