- 5. Attempt any **two** parts of the following : $(10 \times 2 = 20)$
 - (a) Define following with one example :
 - (i) Regular graph.
 - (ii) Complete graph.
 - (iii) Bi-partite graph.
 - (iv) Hamiltonian path.
 - (v) Chromatic number.
 - (b) (i) If G is a non-trivial tree, then prove that G contains at least two vertices of degree one.
 - (ii) Define binary tree and discuss two important applications of it.
 - (c) What do you understand by Automation theory ? For the finite state machine whose transition function δ is given in the table and

 $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = (0, 1), F = \{q_0\},\$

give the entire sequence of states for the input string 110101.

States	Inputs						Inputs				
	0	1									
$\rightarrow q_0$	q_2	q_1									
q_1	q_3	q_0									
q_2	q_0	q_3									
q_3	q_1	q_2									

Printed Pages—4	EOE038										
(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID : 0934	Roll No.										

B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2012-13 DISCRETE MATHEMATICS

Time : 3 Hours

Total Marks : 100

Note : Attempt all questions.

- 1. Attempt any **four** parts of the following : $(5 \times 4 = 20)$
 - (a) Draw a Venn diagram of sets A, B, C where :
 - (i) A and B have elements in common, B and C have elements in common, but A and C are disjoint.
 - (ii) A ≤ B, set A and C are disjoint, but B and C have elements in common.
 - (b) Let $f : R \to R$ and $g : R \to R$, where R is the set of real numbers. Find f o g and g o f, where $f(x) = x^2 2$ and g(x) = x + 4. State where these functions are injective, surjective or bijective.
 - (c) If R and S are equivalance relations on the set A, show that the following are equivalence relations :
 - (i) $R \cap S$
 - (ii) $\mathbf{R} \cup \mathbf{S}$
 - (d) Let A = $\{1, 2, 3\}$. Define f : A \rightarrow A such that f = $\{(1, 2), (2, 1), (3, 3)\}$. Find :
 - (i) f^{-1} (ii) f^2 (iii) f^3 .
 - (e) Let S be the set of all points in a plane. Let R be a relation such that for any two points, a and b;

1

17875

EOE038/DLT-44325

 $(a, b) \in R$ if be is within two centimetre from a, show that R is an equivalence relation.

- (f) What is meant by recursively defined function ? Give the recursive definition of factorial function.
- 2. Attempt any four parts of the following : (5×4=20)
 - (a) Find whether the implication is tautology or not : $((P \lor \sim Q) \land (\sim P \lor \sim Q)) \lor Q.$
 - (b) Draw the truth table for the statement :

 $(\sim (P \lor Q)) \lor ((\sim P) \land Q).$

(c) Determine whether the following argument is valid or not :

"If x is a positive real number, then x^2 is a positive real number. Therefore, if a^2 is positive, where a is a real number, then a is a positive real number."

(d) Using truth table prove that :

 $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P).$

(e) Using logical equivalent formulas, show that

 $\sim (\mathbf{P} \lor (\sim \mathbf{P} \land \mathbf{Q})) \equiv \sim \mathbf{P} \land \sim \mathbf{Q}.$

(f) Using logical equivalent formulas prove that the following implication is a tautology :

 $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R)).$

- 3. Attempt any two parts of the following : (10×2=20)
 - (a) (i) How many triangles are determined by the vertices of a regular polygon of n sides ? How many of them are if no side of the polygon is to be a side of any triangle ?
 - (ii) In how many ways can the symbols a, b, c, d, e,e, e, e, e, e be arranged so that no e is adjacent to another e.

2

(b) Solve the recurrence relation given below :

 $a_r - 7a_{r-1} + 10a_{r-2} = 6 + 8r, n \ge 2$ given $a_0 = 1$ and $a_1 = 2$.

(c) Using generating function, solve the following recurrence relation :

 $a_r - 9a_{r-1} + 26a_{r-2} - 24a_{r-3} = 0, n \ge 3$ with $a_0 = 0, a_1 = 1$ and $a_2 = 10$.

- 4. Attempt any **four** parts of the following : $(5 \times 4 = 20)$
 - (a) Define a group. Verify whether the set of all 2×2 matrices of real numbers form a group with respect to matrix multiplication.
 - (b) Show that the system $(E, +, \cdot)$ of even integers is a ring under ordinary addition and multiplication.
 - (c) Let G be the set of all nonzero real numbers and let

$$a * b = \frac{ab}{2}.$$

Show that (G, *) is an abelian group.

- (d) Let u(8) = {1, 3, 5, 7} be a group with respect to multiplication modulo 8. Prove that every element of u(8) is its own inverse.
- (e) Prove that the union of two subgroups of a group G is a subgroup if and only if one is contained in the other.
- (f) If A_n is the set of all even permutations of degree n,

3

then prove that A_n is a finite group of order $\frac{n!}{2}$ with respect to product of permutations.

EOE038/DLT-44325

EOE038/DLT-44325